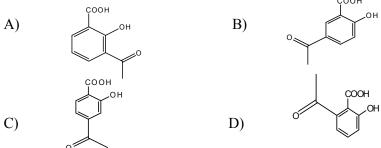

1. Reaction of p-aminophenol with one equivalent of acetyl chloride in the presence of pyridine generates



- 2. Paterno-Buchi reaction involves a
 - A) Photochemical 4+2 cycloaddition
 - B) Thermal 4+2 cycloaddition
 - C) Photochemical 2+2 cycloaddition
 - D) Thermal 2+2 cycloaddition
- 3. The compound among the following, which can exhibit optical activity, is

- 4. Which of the two compounds will be most readily separated by TLC?
 - A) Naphthalene and anthracene
 - B) Acetonephenone and 4-methylacetophenone
 - C) Naphthalene and acetonephenone
 - D) Benzoic acid and 3-methylbenzoic acid
- 5. The major product of the acetylation of salicylic acid with Ac_2O/H^+ followed by heating with anhydrous $AlCl_3$ is

- 6. A chemist plans to prepare 1-bromo-2-pentene by the following reaction: CH₃CH₂CH=CHCH₃ + NBS (in CCl₄) → CH₃CH₂CH=CHCH₂Br This plan is not likely to work because:
 - A) There will be no reaction
 - B) CH₃CHBrCH=CHCH₃ will also form
 - C) CH₃CH₂CHBrCHBrCH₃ will form
 - D) BrCH₂CH₂CH=CHCH₃ will form
- 7. Which starting material, upon reaction with the set of reagents (1) Br₂/FeBr₃, (2) Mg/ether and (3) CO₂ will give benzoic acid?
 - A) Phenol

B) Benzene

C) Aniline

- D) Acetophenone
- 8. Stigmasterol contains
 - A) Two hydroxyl groups and two double bonds
 - B) One hydroxyl group and two double bonds
 - C) Two hydroxyl groups and three double bonds
 - D) One hydroxyl group and one double bond
- 9. The ozonolysis products of zingiberine are:
 - A) Acetaldehyde, acetic acid and laevulic acid
 - B) Acetone, laevulic acid and succinic acid
 - C) Acetone, malonic acid and succinic acid
 - D) Acetaldehyde, phthalic acid and succinic acid
- 10. Which is the product formed in the following reaction?

- 11. The proton NMR spectrum of 2-bromo-2-methylpropane consists of -----.
 - A) Singlet, triplet and a quartet
 - B) Doublet and septet
 - C) Two quartets and one doublet
 - D) Singlet

12.	Which	of the following conformation	n of cyc	elohexane is the most stable?						
	A)	Chair form	B)	Boat form						
	C)	Half-Chair form	D)	Twist-boat form						
13.	In elec	etrophilic aromatic substitution	on react	tion, the nitro group is meta directing						
	becaus	se it:								
	A)	Increases electron density at	meta po	osition						
	B)	Increases electron density at	ortho aı	nd para positions						
	C)									
	D) Decreases electron density at meta position									
14.	Conve	rsion of cyclopentanone to δ	-valerol	actone (C ₅ H ₈ O ₂) can be accomplished						
	A)	Wagner-Meerwein rearrange	ment							
	B)	Baeyer-Villiger rearrangeme								
	C)	Beckmann rearrangement								
	D)	Hofmann rearrangement								
15.	The ra	te of an S _N 1 reaction depends	on the o	concentration of:						
	A)	Nucleophile	B)	Substrate						
	C)	Substrata and nucleophile	D)	Solvent						
16.	Amon	g the following, the one that is	s a stero	id hormone is:						
	A)	Oxytocin	B)	Beta-carotene						
	C)	Cholesterol	D)	Testosterone						
17.	Reacti	on of benzaldehyde with Br-C	CH ₂ -CO-	-OEt and Zinc dust yields						
	A >	^	2)	он о						
	A)		3)							
		Ph ʻ CO₂Et		PH V YOE						

18. IUPAC name of iso-octane is

C)

- 2:2 dimethyl pentane 2:3:3 triethyl pentane A)
- B)
- C)
- 2:3 dimethyl pentane 2:2:4 trimethyl pentane D)

D)

19. Match List IwithList II correctly and select your answer using the codes given below:

- (a) Structural isomerism
- 1. Polarized light

(b) Nicol prism

- 2. Maleic acid
- (c) Propane dioic acid
- 3. **Tautomerism**
- (d) Geometrical isomerism
- 4. Malonic acid

C)

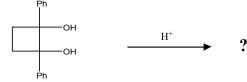
b d A) 1 3 2 3 B) 2 3 C) 1

1

- 20. A carboxylic acid group can be reduced to a primary alcohol by
 - LiAlH₄

2

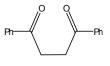
D)

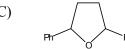

Zn-Hg/HCl B)

4

- N₂H₄/NaOH D)
- Sn/HCl

21. The major product formed in the following reaction is,


3


A)

B)

C)

D)

22. Which one of the following is not an example of Cannizzaro's reaction?

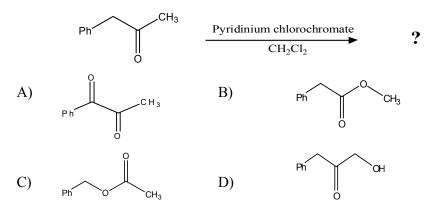
- A) $C_6H_5CHO + HCHO \longrightarrow C_6H_5CH_2OH$ + HCOOH
- →CH₃CH₂OH + H₃CCOOH B) CH₃CHO + H₃CCHO -
- **C**₆H₅CHOHCOOH C) C₆H₅COCHO
- →CCl₃CH₂OH D) 2CCl₃CHO + CCl₃COOH

23. Triglycerides which make up natural oils and fats can be broken down to glycerol and fatty acids using

- A) Diastase
- B) Lipase
- C) **Trypsin**
- D) Pepsin

24. All the following methods would be expected to form a ketone except

- Dehydrogenation of a secondary alcohol A)
- B) Heating Ca-salt of an acid
- C) Acid hydrolysis of analkyl cyanide
- D) Reaction of an acid chloride with Grignard reagent

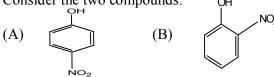

- 25. Total number of isomers possible for the formula $C_4H_{10}O$ of which three are ether is
 - A) 5
- B) 4
- C) 3
- D) 7

- 26. Iodoform reaction is answered by
 - I. Acetophenone
 - II. Benzophenone
 - III. 2-Propanol
 - IV. Acetone

Of these....

- A) III & IV
- B) I& II
- C) I,II& III
- D)I,III &IV

27. The product of the following reaction is,


- 28. Which of the following partition functions contribute maximum to the total molecular partition function?
 - A) Electronic

B) Translational

C) Vibrational

D) Rotational

- 29. Dacron is
 - A) An addition polymer with a benzene ring in every repeating unit
 - B) Condensation polymer with a benzene ring in every repeating unit
 - C) An addition polymer with two carbon atoms in every repeating unit
 - D) A condensation polymer with two nitrogen atoms in every repeating unit
- 30. Consider the two compounds:

Vapour pressure of B at a given temperature could be expected to be

- A) Higher than that of A
- B) Lower than that of A
- C) Same as that of A
- D) Higher or lower than that of A depending on the material in the flask

31.	Which of the following is used as preservative of pickles, tomato ketchup and fruit								
	juices?	?							
	A)	Sodium oxalate	B)	Acetic acid					
	C)	Salicylic acid	D)	Sodium benzoate					
32.	Which	one of the following is used i	in perfu	mes?					
	A)	Acetophenone	B)	Benzene					
	C)	Benzoyl chloride	D)	Methyl salicylate					
33.	The di	fferentials of are inexa	ct.						
	A)	w and G	B)	w and q					
	C)	q and U	D)	w and S					
34.	The vi	tamin responsible for DNA sy	nthesis	is					
	A)	Ascorbic acid	B)	Cyanocobalamine					
	C)	Ergocalciferol	D)	Pyridoxine					
35.	A viru	s particle primarily contains							
	A)	1 1							
	B) Nucleic acids and vitamins								
	C)	Proteins and carbohydrates							
	D)	Proteins and hormones							
36.	Lenna	rd-Jones theory is related to -							
	A)	Vapourisation	B)	Sublimation					
	C)	Fusion	D)	Decomposition					
37.	What i	is oil of mirbane?							
	A)	Aniline	B)	Nitrobenzene					
	C)	Methylamine	D)	Acetophenone					
38.	Which	of the following statement is	correct	with respect to carbanions?					
	A) They are formed by homolytic fission								
	B) The carbon carrying the charge has even number of valence electrons								
	C) They have distorted octahedral structure								
	D) The hybrid of carbon in carbanions is sp ²								
39.	The re	agent used in Dickmann cond	ensation	n is					
	A)	Anhy. AlCl ₃	B)	C_2H_5ONa					
	C)	Al(OCH Me) ₃	D)	KNH ₂ in liquid NH ₃					
40.	Which	one is a direct dye?							
	A)	Alizarin	B)	Malachite green					
	C)	Indigo	D)	Congo red					

41.	The decreasing order of re and non aromatic compount A) Aromatic > anti ar B) Anti aromatic > aro C) Non aromatic > and D) Aromatic > non aromatic	nds is omatic > non arc omatic > non arc ti aromatic > aro	omatic matic matic	natic, anti a	romatic
42.	In gas-liquid chromatograph A) Liquid C) Plasma	ohy the stationary B) D)	y phase is a Gas Gas-liquid solution	on	
43.	Proteins play an important different amino acids A) 26 B)	nt role in biocho	emistry; they usual	lly consist o	of8
44.	The Hofmann rearrangem that in the A) Pinacol rearrangem C) Cope rearrangement	nent B)	Claisen rearrange	ement	similar to
45.	Which of the following cacidified KMnO ₄ ?	ompound does r	oot give benzoic ac	id on oxida	ution with
	A)	B)			
	$C) \qquad \begin{array}{c} CH_3 \\ C-CH_3 \\ CH_3 \end{array}$	D)	CHO		
46.	Which of the following ba A) Adenine C) Guanine	se is found only B) D)	in RNA and not in I Uracil Thymine	DNA	
47.	Which one of the followin A) ZnO B)	ng is not n-type a ZnS	nd non-stoichiomet C) CdS	tric semicon D)	ductors? FeS
48.	The complex ion with ma A) [Co (NH ₃) ₆] ³⁺ C) [Co (CNS) ₄] ²⁻	ximum CFSE is: B) D)	$[Mn (H_2O)_6]^{2+}$ $[Co F_6]^{3-}$		
49.	Which of the following fa A) Small ion, low cha C) Large ion, high cha	rge B)	e energy in ionic co Small ion, high c Large ion, low ch	harge	
50.	Which of the following via A) $2s^1 2px^2 2py^1 2pz^1$ C) $2s^1 2px^1 2py^1 2pz^1$	plates the Aufbau B) D)	principle? 2s ² 2px ² 2py ¹ 2pz ¹ 2s ² 2px ² 2py ² 2pz ¹		

51.	The occurrence of reaction is impose A) ΔH is + ve and $\Delta S = +$ ve	B)	ΔH is - ve and $\Delta S = +$ ve
	C) ΔH is + ve and $\Delta S = -$ ve	D)	ΔH is - ve and $\Delta S = -$ ve
52.	 Which of the following statements A) Double bond is shorter than B) Hydrogen bond is stronger to C) Double bond is stronger than D) Covalent bond is stronger than 	single than ion a sing	oond ic bond le bond
53.	The colligative property of a solutionA) Nature of solventC) No.of moles of solvent	on depen B) D)	nds on Nature of solution Number of solute particles.
54.	Choose the correct statements: I. The boiling point of a solvent is a II. The freezing point of a solvent is III. A dilute solution has more solu IV. Molality of a solution is the nur	s always te than s	s higher than that of the solution.
	Of the statements: A) I and II C) II and III	B) D)	I and III I and IV
55.	The numbers of α and β particles in A) 6α , 4β C) 8α , 6β	B) D)) series involved are 7α , 4β 8α , 5β
56.	When phosphate is treated with an conc. Nitric acid, one gets A) Yellow precipitate C) Red precipitate	nmoniur B) D)	m molybdate solution in the presence of White precipitate Black precipitate
57.	Which of the following is a tetra bath A) Orthophosphoric acid C) Pyrophosphoric acid	asic acid B) D)	? Meta phosphoric acid Phosphorous acid.
58.	On heating, potassium permangana A) K ₂ MnO ₄ + MnO+ O ₂ C) K ₂ MnO ₄ + MnO ₂ + O ₂	B)	$K_2MnO_4 + MnO_2 + H_2O$ $MnO_2 + MnO + O_2$
59.	The reaction catalysed by superoxi A) Hydrogenation C) Deiodination D)	B)	utase is: Disproportionation ination

60.	Which of the following ions is smaller in size than Cl^- ion? A) S^{2-} B) K^+ C) Br^- D) Rb^+
61.	The ground term symbol of the metal ion present in hemoglobin is A) 1S_0 B) 5D_4 C) $^2D_{3/2}$ D) 5D_0
62.	The order of CO stretching frequency in the series of $V(CO)_6$, $Mn(CO)_6$ and $Cr(CO)_6$ is, A) $V(CO)_6$ - $+< Cr(CO)_6 B) Cr(CO)_6>V(CO)_6>Mn(CO)_6+ C) V(CO)_6-< Cr(CO)_6<Mn(CO)_6+ D) Cr(CO)_6>Mn(CO)_6+> V(CO)_6-> V(CO)_6-V(CO$
63.	Which of the following metalloproteins does not have iron in the active site? A) Hemoglobin B) Hemerythrin C) Hemocyanin D) Cytochrome
64.	The metal that is involved in water oxidation of the photosynthetic process is, A) Cr B) Mn C) Co D) Ni
65.	 When an electron is removed from oxygen molecule to form O₂⁺, A) The bond length and bond order both increase B) The bond length and bond order both decrease C) The bond length decreases and bond order increases D) The bond length increases and bond order decreases
66.	If $^6\text{Li}_3$ and $^2\text{H}_1$ are transmutated, the products are A) $^7\text{Li}_3 + ^1\text{H}_1$ B) $^7\text{Li}_3 + ^1\text{n}_0$ C) $^7\text{Li}_3 + ^4\text{He}_2$ D) $^6\text{Li}_3 + ^1\text{H}_1$
67.	In the trigonalbipyramidal crystal field, the d orbital with the highest energy is A) d_{xy} B) $d_x 2$ - $y 2$ C) d_{yz} D) $d_z 2$
68.	The metal present at the active site of the protein carboxypeptidase A is A) Zinc B) Molybdenum C) Magnesium D) Cobalt
69.	For the aqueous solution-air interface is a capillary active solute. A) Sodium chloride B) Sugar C) Diethyl ether D) Glycerine
70.	Which of the following molecules will have a permanent dipole moment? A) SiF ₄ B) XeF ₄ C) SF ₄ D) BF ₃
71.	Which of the following is not a primary pollutant? A) Sulphurdioxide B) Carbondioxide C) Carbon monoxide D) Nitrogen oxides.

72.	Bis (d A) B) C) D)	imethylglyoximato) nickel (II) Paramagnetic and square pla Diamagnetic and tetrahedral Paramagnetic and tetrahedra Diamagnetic and square plar	nar I	
73.	Accor A) B) C) D)	rding to Fajan, polarization is g Small cation and small anion Small cation and large anion Large cation and large anion Large cation and small anion	l	y high with
74.	The st A) C)	trongest oxidizing and reducing F ₂ O, N ₃ ⁻ K ₂ Cr ₂ O ₇ , Cu ₂ Cl ₂	g agents B) D)	s are respectively KMnO ₄ , FeSO ₄ KMnO ₄ , H ₂ C ₂ O ₄
75.	Which	among the following molecules	belong t	to point group C ₄ v?
	A)	$[PtCl_4]^{2-}$	B)	XeOF ₄
	C)	XeF ₄	D)	[BF ₄] Na ⁺
76.	The mA)	ost abundant elements in the u O, N H, He D)	niverse B) C, H	e are H, O
77.	A cho A) C)	emical that can be used simulta Soda Alum	neousl B) D)	y as coagulant and softening agent is Sodalime Lime
78.	System A) C)	natic error Is always positive Can be corrected	B) D)	Cannot be corrected Is always negative
79.	Whice A) C)	th of the following has ionic M Ferrocene Manganocene	-L bond B) D)	ding? Dibenzene chromium Zeise's salt
80.	The a A) C)	actual catalyst in hydroformyla HCo(CO) ₄ CO	tion rea B) D)	Co ₂ (CO) ₈ CO + H ₂
81.	Isotac A) C)	tic polypropylene can be synth Ring opening polymerisation Step growth polymerisation	1 B)	by Coordination polymerisation Copolymerization
82.	Which A) C)	n of the following ore does not Dolomite Gypsum	contain B) D)	n magnesium? Carnallite Epsom

83.	 14C- isotope is used in which of the following research studies? A) Treatment of cancer B) Determination of age of earth C) Dating of wood and animal fossils D) Fertilizer absorption of plants. 								
84.		bstance show O ₂		agnetisr rO ₂	n?	C)	CdO	D)	MnO
85.		s an inverse s	spinal stru B) α			C)	γ-Fe ₂ O ₃	D)	Fe ₃ O ₄
86.	The orthodal A) a= C) a≠	rhombic crys b=c; α=β=γ b≠c; α= γ=9	stal syster =90° 10°; β≠90	n is rep B	resen))	ted by a≠b≠c a≠b=c	;α=β=γ=90° ; α=β=γ=120°		
87.	with NaB	H ₄ gives proc N ₃ H ₃		he prod B	uct X			wed by	treatment
88.	O distance A) (4.	e in MnO is,	ŕ	В)		parameter a = 4.43) Å ^{1/2}) Å	4.43 Å.	The Mn-
89.	The most A) [C	,		compo	und a	` mong tl [Cr(η ⁶ -	ne following for $C_6H_6)_2$] $-C_5H_5)_2$]	our is,	
90.	A) A Ca B) A C) Co	assius' mixture of C	a of Gold a(OH) ₂ a can be co	d with nd CuS oncentra	collo O ₄ is ited b	idal sta known y froth	nnic acid is as Bordeax m floatation met	ixture	purple of
91.	A) Ne	abber is a pol eoprene aloroprene	ymer of -	 B D		Isoprer Butadi			
92.	respective A) sp		ntomic or	bitals o B D)	sp, sp^2	NO ₂ ⁺ , NO ₃ ⁻ and sp ³ and sp	and NH	4 ⁺ are

93.	Which A) C)	n of the following lanthanides Sm Ce	s exhibit B) D)	s variable oxidation states more readily? Gd Yb
94.	The co	olour of Prussian Blue is due Spin orbit coupling Vibronic coupling	to B) D)	
95.	third thenun A)	· · · · · · · · · · · · · · · · · · ·	he same N_2 in the B)	1:8:7
	C)			$1:\frac{1}{16}:\frac{1}{14}$
96.	Which false?	one of the following statem	ents abo	out fluorescence and phosphorescence is
	A)	In general, fluorescence phosphorescence.	e occu	rs in a longer time scale than
	B)			onic transition from a triplet electronic te
	C)		tronic tra	ansition from a singlet electronic excited
	D)	Intersystem crossing takes p		fore phosphorescence
97.	Cis an A) B) C) D)	d transcinnamic acids can be IR spectra UV spectra Chemical shift of the olefin Coupling constant of the ole	ichydro	
98.		volumes of two acidic solution resulting solution is approximately		ving pH=1 and pH=6 are mixed. The pH
	A)	3.0	B)	1.3
	C)	1.0	D)	5.1
99.		of the following, the one ometeris Tungsten filament lamp Deuterium lamp	which B) D)	is not an excitation source for IR Nernst glower Mercury arc
100.	Which A) C)	one of the following is not a Limiting current Ilkovic equation	related to B) D)	o polarography? Diffusion current constant Current efficiency
101.		•	,	noxide (in J/K mol) at 0°K is around 2.50 5.76

102.	At a given temperature, which of the following molecules have the largest r.m.s. velocity?							
	A)	HC1	B)	H_2S				
	C)	SO_2	D)	N_2O_5				
103.		absolute temperature of a gas ne volume of the gas will	is doul	bled and the pressure is reduced to one				
	A)	Remain unchanged	B)	Be doubled				
	C)	Increase fourfold	D)	Be reduced to half				
104.	When A) B) C) D)	concentration of weak acid inc Dissociation constant increas Dissociation constant decreas Degree of dissociation increas Degree of dissociation decrease	ses ses ses	then				
105.		H^{+}] concentration in a soluntration	ution is	s 2 x 10^{-5} M. Calculate the [(OH) ⁻]				
	A)	1 x 10 ⁻⁹ M	B)					
	C)	$5 \times 10^{-10} M$	D)	$1 \times 10^{-8} \mathrm{M}.$				
106.	cm ² g.e			of Al ³⁺ and SO ₄ ²⁻ are 179 and 148 ohm ⁻¹ and equivalent conductance of Al ₂ (SO ₄) ₃				
	A)	446 and 358	B)	802 and 327				
	C)	802 and 133.67	D)	133.67 and 802				
107.	For a f	first order reaction, Ea is zero,	k is equ	ual to(A is the frequency factor):				
	A)	Zero	B)	Infinity				
	C)	A	D)	A^{-1}				
108.	DTA a	and TGA techniques are useful						
	A)	Decomposition and oxidation	ı					
	B)	Reduction and hydrolysis						
	C)	Reduction and oxidation						
	D)	Decomposition and solvolysi	IS					
109.				ift in Mossabauer spectroscopy are:				
	A)	s-electron	B)	p-electron				
	C)	d-electron	D)	f-electron				
110.	How r	nany degenerate energy states		sent in E= $14 \text{ h}^2/8 \text{ mL}^2$				
	A)	9	B)	8				
	C)	6	D)	3				

111.		3 is aelec Ferri	etric mar B)	terial. Ferro		C)	Piezo	D)	Pyro
112.	Which $v_{max}17$ A)	one among t 80 cm ⁻¹ in the Acetonitrile Acetophenone	IR spect	rum?	B)		butanone	an absorption	band at
113.	The in A) C)	strument used Spectrometer Calorimeter	for meas	suring h	eat con B) D)	Polari	imeter nometer		
114.	In a ga A) B) C) D)	Ivanic cell, sale Complete the Reduce electr Separate anod Carry salts for	circuit ic resista le from o	ance in cathode	the cell				
115.		ore rapidly a w particle itdescr Zero Higher		ection c	hanges B) D)	from p Lowe Const	r	ace, the kinet	ic energy
116.	The fu A) C)	nction cos ax i d/dx Logarithm	s an eigi	n functi	on of th B) D)	_	plication		
117.		- has the prope Tetrasulfurtet Disulfurdinitr	ranitride		nsional Polyth D)	iazyl	lic conduct	•	
118.	Accord A) C)	ding to Wien di $M = \sigma T^4$ $T\lambda_{max} = consta$		nent law		$U=\alpha T$ λ_{max}/T	Γ= constan	t	
119.	The real A) C)	storing force and kx and kx ² -kx ² and 2kx	-	tial ene	rgy of a B) D)		$nd 1/2 kx^2$		ctively
120.	Glassy A) C)	carbon electro Reference electro Counter electro	ctrode	ed in cy	velic vo B) D)	Work	etric techni ing electro of these	•	
